Зависимость требуемой величины открытия дроссельной заслонки при заданной доле отключенных циклов (рис.3) была найдена с использованием описанной выше математической модели индикаторного процесса РПД исходя из условия $N_i = N_i^-$. Необходимые для расчетов значения средних механических потерь были определены экспериментально методом прокрутки двигателя BA3-311 при различных степенях открытия дроссельной заслонки.

Зависимость среднего эффективного давления p_e^- при полном открытии дроссельной заслонки на частоте вращения 2000 мин⁻¹ от доли отключаемых циклов приведена на рис. 4.

Значение p_e^- при полном открытии дроссельной заслонки определяет величину возможного улучшения топливной экономичности двигателя за счет отключения части циклов. Так, например, на осредненном режиме городского ездового цикла: p_e =0,2 МПа, n=2000 мин⁻¹, минимум удельного расхода теоретически достигается (рис. 3) при отключении 68% циклов. Следует, однако, иметь в виду, что с увеличением доли отключаемых циклов растет неравномерность частоты вращения. Выбор для каждого режима работы РПД максимально допустимой, с учетом неравномерности частоты вращения, доли отключаемых циклов требует дополнительных исследований

РАСХОДНЫЕ ХАРАКТЕРИСТИКИ ТОПЛИВНОЙ АППАРАТУРЫ ДИЗЕЛЕЙ КАК ИНСТРУМЕНТАРИЙ ДЛЯ ИССЛЕДОВАНИЯ МЕЖЦИКЛОВОЙ НЕСТАБИЛЬНОСТИ ПРОЦЕССОВ ТОПЛИВОПОДАЧИ НА ДОЛЕВЫХ РЕЖИМАХ РАБОТЫ

Горелик Г.Б., Чистяков А.Ю.

Хабаровский государственный технический университет, г. Хабаровск

Как было показано ранее в работе [1] для исследования стабильности процессов топливоподачи в последовательных циклах впрыскивания возможно использовать расходные характеристики топливного насоса высокого давления (ТНВД) $V_k = f_1(p_{\it ocm})$ и форсунки $V_\phi = f_2(p_{\it ocm})$, представляющие собой зависимости объемного расхода топлива насоса и форсунки от величины остаточного давления $P_{\it ocm}$ в системе высокого давления (СВД) перед началом цикла.

Для анализа протекания процессов топливоподачи в последовательных циклах впрыскивания используется критерий стабильности процессов впрыскивания X, определяющийся растром угла взаимного пересечения расходных характеристик

$$X = \left[\frac{df_2(p_{ocm})}{dp_{ocm}} - \frac{df_1(p_{ocm})}{dp_{ocm}}\right] \cdot \frac{1}{\alpha V_c} = K_{\phi} - K_{H},$$

где

 α - коэффициент сжимаемости топлива;

 V_c - объем СВД;

$$K_{\phi}=rac{df_{2}(P_{ocm})}{dP_{ocm}}\cdotrac{1}{lpha V_{c}}$$
 - коэффициент наклона расходной характеристики

форсунки;

$$K_{_{n}} = \frac{df_{_{1}}(P_{_{ocm}})}{dP_{_{ocm}}} \cdot \frac{1}{\alpha V_{_{c}}}$$
 - коэффициент наклона расходной характеристики

насоса.

Данный критерий и способ его определения базируются на линейности расходных характеристик насоса и форсунки и неизменности растра угла в точке пересечения расходных характеристик при любом значении P_{ocm} , т.е. величина критерия стабильности X не меняется от цикла к циклу.

Анализ расходных характеристик $V_k = f_1(p_{ocm})$ и $V_\phi = f_2(p_{ocm})$, полученных моделированием процессов топливоподачи для различных скоростных режимов работы и при различных значениях активного хода плунжера показал, что характеристики линейны только на режимах, близких к номинальному. На режимах же частичных нагрузок (меньших 60-75%) имеет место нелинейность расходных характеристик [2]. Это означает, что наклон характеристик неодинаков при разных значениях P_{ocm} . Это означает, что величина критерия X зависит от остаточного давления и принимает различные от цикла к циклу значения, что затрудняет оценку стабильности процессов впрыскивания и усложняет характер колебаний параметров топливоподачи. На рис.1 показаны расходные характеристики топливной аппаратуры дизель-генератора ДГР 160/750 при работе на режиме холостого хода.

Нелинейность расходных характеристик в первую очередь объясняется повышенным влиянием различного рода утечек, сжимаемости топлива, а также наличием разрывов сплошности в СВД и влиянием волновых процессов в трубопроводе высокого давления на величину цикловой подачи.

Таким образом, значение критерия стабильности X вблизи точки пересечения расходных характеристик V_k и V_ϕ не позволяет оценить реальную стабильность процессов топливной аппаратуры. Необходимо разработать усовершенствованный метод расчетно-экспериментального исследования качества работы топливной аппаратуры на частичных режимах с включением в него параметров, оценивающих стабильность процессов впрыскивания в последовательных циклах топливоподачи.

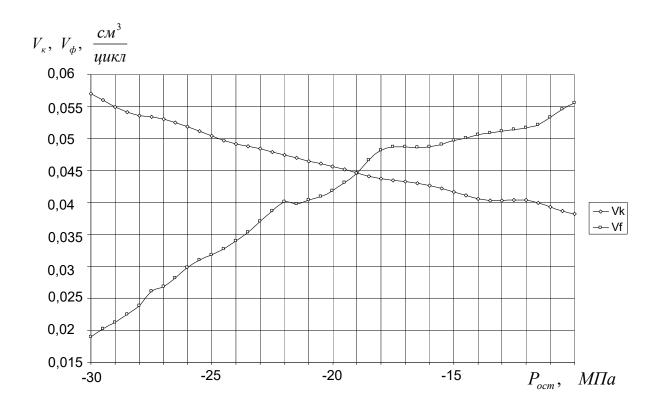


Рис.1. Расходные характеристики ТНВД и форсунки дизель-генератора ДГР 160/750 при работе на режиме холостого хода

Для решения поставленной задачи предложен метод определения критерия стабильности Х для режимов с нелинейными расходными характеристиками. Суть метода состоит в следующем. Как показано на рис. 2 расходные характеристики разбиваются на минимально возможное количество относительно линейных участков с последующей аппроксимацией кривых. На конкретном участке получаем прямую вида $(V_k = k_1 \cdot P_{ocm} + b_1 \text{ и } V_\phi = k_2 \cdot P_{ocm} + b_2)$, т.е. получаем расходные характеристики, состоящие из нескольких прямых. Точки пересечения соседних прямых (т.1, т.2, т.3 на рис.2) – точки излома характеристик. Далее, расходные характеристики разбиваются на участки по точкам излома характеристик, при этом учитываются все точки на $V_{\scriptscriptstyle k}$ и $V_{\scriptscriptstyle \phi}$, малыми участками следует пренебречь. Таким образом, получаем определенное количество участков (I, II, IV на рис.2), на которых наклоны $V_k = f_1(p_{ocm})$ и $V_{\phi} = f_2(p_{ocm})$ определены, что позволяет найти локальные значения критерия стабильности Х. При этом растр угла в точке пересечения полученных прямолинейных расходных характеристик, а, следовательно, и критерий стабильности Xнеизменны по всей длине одного и того же участка.

Результаты определения критерия стабильности X по участкам представлены в таблице.

N участка	$K_{_{\scriptscriptstyle H}}$	K_{ϕ}	X
I	-0,160	0,425	0,585
II	-0,160	0,096	0,256
III	-0,160	0,462	0,622
IV	-0,160	0,087	0,247

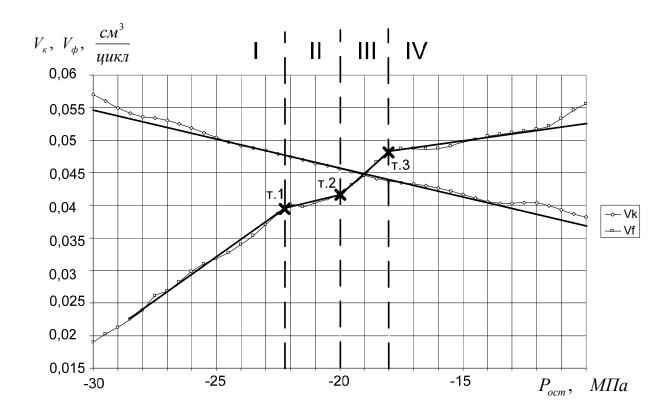


Рис.2. К методу определения критерия стабильности *X* для режимов с нелинейными расходными характеристиками

Для оценки реальной стабильности процессов топливоподачи рекомендуется использовать усредненное значение

$$X_{cp} = \frac{\sum X}{n} = \frac{X_1 + X_2 + \dots + X_n}{n},$$

где n - количество участков.

В данном случае $X_{cp}\approx 0,43$. Адекватность принятого решения подтверждается расчетом последовательных циклов топливоподачи при внесении единичного возмущения $\Delta P = +4~M\Pi a$ от установившегося значения режимного остаточного давления (см. рис. 3).

Таким образом, значение критерия $X_{cp}\approx 0.43$ соответствует условию апериодического затухающего переходного процесса $0\leq X\leq 1$ при внесении возмущения в режим работы топливной аппаратуры $\Delta P=+4$ *МПа* . Как

видно из рис. 3 уже после 6-го последовательного цикла впрыскивания режим стабилизируется.

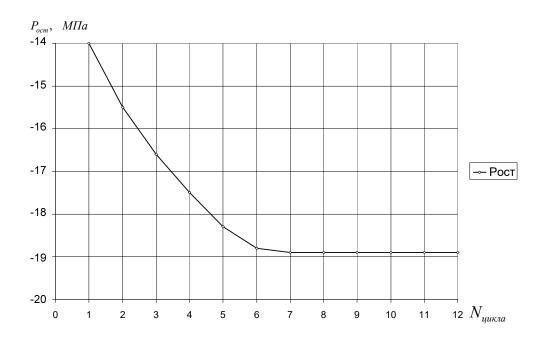


Рис. 3. Изменение остаточного давления в последовательных циклах впрыскивания

Следует также учитывать, что на некоторых режимах (в данной работе из-за большого количества материала эти данные не приведены) возможно наличие участков с величиной критерия стабильности много большей значений других участков вплоть до $X \ge 2$. В таких случаях следует учитывать и максимальное значение X, которое при достаточно большой относительной длине участка может быть определяющим.

На режимах с небольшими колебаниями остаточного давления от цикла к циклу несмотря на нелинейные расходные характеристики для оценки межцикловой нестабильности достаточно знать величину критерия стабильности вблизи только точки пересечения расходных характеристик, тогда как величины X на остальных участках будут определять характер и длительность переходных процессов.

Выводы:

Предложен метод для оценки стабильности процессов топливной аппаратуры на режимах с характерными нелинейными расходными характеристиками насоса высокого давления и форсунки. Однако, вполне реально использование предложенной в работе [1] методики для оценки межцикловой стабильности по усредненным коэффициентам K_n и K_ϕ , но при этом не будет учитываться нестационарность процессов топливоподачи в последовательных циклах.

ЛИТЕРАТУРА

- 1. Горелик Г. Б. Физическая природа нестабильной от цикла к циклу работы топливной аппаратуры дизелей и критерий стабильности режима // Актуальные проблемы создания, проектирования и эксплуатации современных двигателей внутреннего сгорания: Сборник научных трудов. Хабаровск: Изд-во Хабар. гос. техн. ун-та, 1999. С. 29-37.
- 2. Горелик Г. Б., Чистяков А.Ю. К вопросу исследования стабильности процессов топливоподачи при работе дизелей на частичных режимах // Актуальные проблемы создания и эксплуатации комбинированных двигателей внутреннего сгорания. Материалы международной научнотехнической конференции «Двигатели 2002». Хабаровск: Изд-во Хабар. гос. техн. ун-та, 2002. С. 55-61.

ОСОБЕННОСТИ РАБОЧЕГО ПРОЦЕССА ДИЗЕЛЯ И ТОПЛИВНОЙ АППАРАТУРЫ ПРИ РАБОТЕ НА ВОДОТОПЛИВНОЙ ЭМУЛЬСИИ

Горелик Г.Б., Чистяков А.Ю.

Хабаровский государственный технический университет, г. Хабаровск

Водотопливные эмульсии (ВТЭ) получили признание как альтернативное топливо. Однако изучением свойств и применением водотопливных эмульсий в эксплуатации занимается сравнительно небольшой круг инженеров и ученых. В эксплуатации к сожалению эмульсия применяется весьма ограничено, что предопределяет актуальность работ в части использования ВТЭ.

Следует отметить большое разнообразие способов получения ВТЭ и подачи ее в двигатель. Целесообразна транзитная подача приготовленной в малогабаритном модуле эмульсии непосредственно в двигатель. Способы приготовления реализуют смешение компонентов при различных затратах внешней энергии. Наиболее приемлемы гидродинамический, лазерный и акустический способы, при которых возможно деструктивное воздействие на ВТЭ на уровне релаксационных изменений структуры. При использовании ВТЭ, имеющих иные физико-механические свойства, температурные и вязкостные характеристики и о которых имеется недостаточно полная информация, возникает целый круг частных вопросов и задач, решение которых должно предшествовать практической реализации ВТЭ в рядовой эксплуатации.

Однако до сих пор не изжита «водобоязнь» организаций, эксплуатирующих двигатели внутреннего сгорания, и практически внедрение ВТЭ так и не состоялось до настоящего времени. Главный довод противников использования ВТЭ – вода приводит к коррозии прецизионных элементов топливной аппаратуры (ТА) и деталей цилиндро-поршневой группы