плекс мер, способствующих интенсификации процессов смесеобразования и сгорания, через воздействие на параметры топливоподачи. Кроме этого выдвинуто предположение о целесообразности применения теплового аккумулятора в виде жаропрочной вставки в поршне.

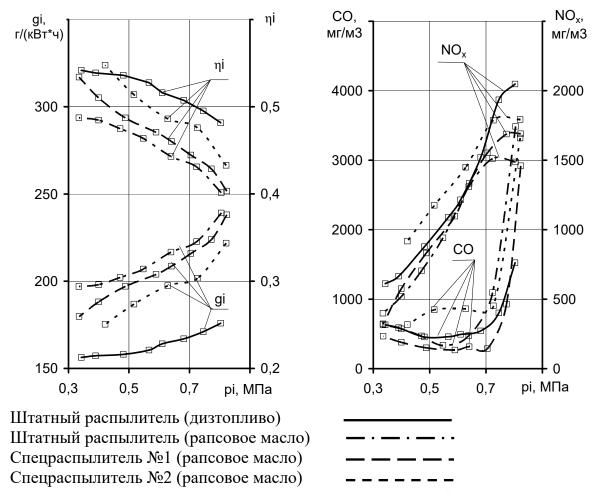


Рис. 4. Показатели экономичности и токсичности при работе двигателя на различных распылителях.

В заключении отметим, что для эффективного использования чистого рапсового масла в качестве топлива для дизелей с объемно-пленочным смесеобразованием необходимо провести комплекс мероприятий:

обеспечить температуру топлива в системе питания дизеля 40-45° С;

увеличить энергию впрыска топлива;

применять распылители специальной конструкции;

провести регулировки, обеспечивающие оптимизацию работы двигателя.

РАБОТА ДИЗЕЛЯ НА МЕТИЛОВОМ ЭФИРЕ РАПСОВОГО МАСЛА

Марков В.А., Зенин А.А., (МГТУ им. Н.Э. Баумана), Девянин С.Н. (МГАУ им. В.П. Горячкина), Гайворонский А.И. (ЗАО «Севморнефтегаз»), Черных В.Н. (ЗАО «Маслопродукт»)

В соответствии с принятой в 2003 г. Директивой 2003/30/ЕС Европейского Парламента и Союза «О содействии использованию биогорючего и других видов горючего на транспорте» ставится задача расширения использования биотоплив и

замена ими нефтяных моторных топлив [1,2]. При этом в качестве основного сырья для производства биотоплив рассматриваются растительные масла [3,4,5].

К масличным культурам относится более 150 видов растений, вырабатывающих масла. Сырьём для производства биодизельного топлива в разных странах служат масла различных растений. В Европе — это рапс, в США — соя, в Индонезии и на Филиппинах — пальмы (пальмовое масло), в Индии — ятрофа (Jatropha), в Африке — соя, ятрофа, в Бразилии — бобы кастора, в Китае, Японии, Индонезии — арахис. Возможно производство биодизельного топлива из подсолнечного масла.

В условиях Российской Федерации производство биотоплив наиболее целесообразно из рапсового масла (РМ). Рапс может выращиваться в средней полосе России, он отличается сравнительно высокой урожайностью (15-17 ц/га), масличность семян рапса составляет 40-50 %, при производстве РМ получают жмых, являющийся ценным белковым кормом для животноводства. При этом РМ применяется как самостоятельное топливо для дизелей, в смесях с дизельным топливом (ДТ) или перерабатывается в метиловый эфир рапсового масла (МЭРМ), используемый или как самостоятельное биотопливо, или как смесевое (в смеси с ДТ).

При энергетическом использовании РМ в качестве моторного топлива возможны два пути — децентрализованное и централизованное производство топлив. При децентрализованном производстве, как правило, проводится небольшая модификация дизелей и используется простое фильтрованное РМ (либо в чистом виде, либо в смеси с ДТ). Преимущества децентрализованного использования РМ: экологичность и биоразлагаемость РМ, небольшие энергозатраты при его производстве, небольшие инвестиционные затраты, сокращение транспортных расходов, сохранение рабочих мест в сельскохозяйственных регионах. При этом обычно РМ применяется в качестве топлива непосредственного на месте его производства — в фермерских хозяйствах, агропромышленных предприятиях и др.

Централизованное производство предусматривает получение МЭРМ и его использование в дизелях любых марок. В Германии в настоящее время работают 800 заправочных станций, где предлагается биодизельное топливо («Bio-Diesel»), представляющее собой смесь 95 % ДТ и 5 % МЭРМ. На состоявшейся в ноябре 2005 г. в Магдебурге международной конференции представитель концерна Daimler Chrysler сообщил, что все автомобили, выпускаемые концерном, подготовлены к работе на топливах, содержащих 10 % биотоплива [6]. Проведены исследования по адаптации дизелей различного назначения на биотопливе B20 (смесь 80 % ДТ и 20 % МЭРМ) [7]. Многие специалисты считают биодизельное топливо лучшим из имеющихся видов топлива для двигателей с самовоспламенением.

В России начало широкомасштабного промышленного производства биодизельного топлива намечено на 2009 г. При этом в соответствии со стандартом Российской Федерации ГОСТ Р 52368-2005 «Топливо дизельное ЕВРО. Технические условия» биодизельное топливо должно содержать не более 5 % МЭРМ.

Проведен ряд исследований дизелей, работающих на смесях ДТ и МЭРМ различного состава [7,8,9]. Вместе с тем, проблема использования смесей ДТ и МЭРМ в отечественных дизелях является недостаточно изученной.

Авторами статьи проведены исследования дизеля Д-245.12С (4 ЧН 11/12,5) Минского моторного завода, работающего на смесях ДТ и МЭРМ. Двигатель имел камеру сгорания типа ЦНИДИ, был оснащен турбокомпрессором ТКР-6 Борисовского завода автоагрегатов и рядным ТНВД фирмы Motorpal (Чехия) модели PP4M10U1f с диаметром плунжеров $d_{\text{пл}}$ =10 мм и их ходом $h_{\text{пл}}$ =10 мм. Использовались форсунки ФДМ-22 с распылителями Motorpal DOP 119S534, выполненными с

пятью распыливающими отверстиями диаметром d_p =0,34 мм и суммарной эффективной площадью распылителя в сборе $\mu_p f_p$ =0,250 мм². Давление начала впрыскивания составляло $p_{\phi o}$ =21,5 МПа.

Дизель исследовался на моторном стенде AMO «ЗиЛ» на режимах внешней скоростной характеристики и 13-ступенчатого испытательного цикла Правил 49 ЕЭК ООН (EURO-2) с установочным углом опережения впрыскивания θ =13° поворота коленчатого вала до ВМТ и неизменным положением упора дозирующей рейки ТНВД (упора максимальной подачи топлива). При этом основными исследуемыми режимами внешней скоростной характеристики являлись режимы максимальной мощности при n=2400 мин⁻¹ и максимального крутящего момента при n=1500 мин⁻¹. При измерении дымности ОГ режим минимальной частоты вращения составлял n=1080 мин⁻¹. Дымность измерялась с помощью ручного дымомера МК-3 фирмы Hartridge (Великобритания) с погрешностью измерения $\pm 1\%$. Концентрации NO_x, CO, CH_x в ОГ определялись газоанализатором SAE-7532 японской фирмы YANACO с погрешностями измерения $\pm 1\%$.

Таблица 1. Физико-химические свойства исследуемых топлив.

Физико-химические	Топлива					
свойства	ДТ	МЭРМ	95%ДТ+	90%ДТ +	80%ДТ +	
			5% MЭPM	10% МЭРМ	20% МЭРМ	
Плотность при 20° C, кг/м ³	830	877	832	835	839	
Вязкость кинематическая при 20° С, мм ² /с	3,8	8	3,94	4,09	4,41	
Коэффициент поверхностного натяжения при 20° С, мН/м	27,1	30,7	-	-	-	
Теплота сгорания низшая, МДж/кг	42,5	37,8	42,27	42,03	41,56	
Цетановое число	45	48	-	-	-	
Температура самовоспламенения, ° С	250	230	-	-	-	
Температура помутнения, ° С	-25	-13	-	-	-	
Температура застывания, ° С	-35	-21	-	-	-	
Количество воздуха, необходимое для сгорания 1 кг веще-	14,3	12,6	14,24	14,16	13,98	
ства, кг			0.5.	0.5.4	0.7.1	
Содержание, % по массе С	87,0	77,5	86,5	86,1	85,1	
Н	12,6	12,0	12,6	12,5	12,5	
O	0,4	10,5	0,9	1,4	2,4	
Общее содержание серы, % по	0,20	0,002	0,19	0,18	0,16	
массе						
Коксуемость 10 %-ного остатка, % по массе	0,2	0,3	-	-	-	

Примечание: «-»— свойства не определялись.

Исследуемый дизель работал на смесях ДТ по ГОСТ 305-82 и МЭРМ, полученного на одном из заводов Германии из рапса, выращенного в России. Физикохимические свойства этого МЭРМ соответствовали требованиям Европейского стандарта EN 14214:2003 «Автомобильные топлива. Метиловые эфиры жирных кислот (FAME) для дизельных двигателей. Требования и методы испытаний». Некоторые физико-химические свойства исходных ДТ и МЭРМ и их смесей приве-

дены в табл. 1 (для смесей указано объемное процентное содержание в них ДТ и МЭРМ).

В процессе экспериментальных исследований определялись основные показатели дизеля и рассчитывались интегральные удельные массовые выбросы токсичных компонентов на режимах 13-ступенчатого испытательного цикла. Для оценки топливной экономичности дизеля использованы удельный эффективный расход топлива g_e и эффективный КПД η_e . Основные показатели дизеля приведены в табл. 2 и на рис. 1 и 2.

Таблица 2. Показатели дизеля Д-245.12С, работающего на различных топливах

Показатели дизеля		Объемная концентрация МЭРМ				
		в смесевом биотопливе, %				
	0	5	10	20		
Часовой расход топлива на режиме максимальной	19,13	19,45	19,76	19,76		
мощности, G _{т 2400} , кг/ч						
Часовой расход топлива на режиме максимального	12,30	12,50	12,54	12,68		
крутящего момента, G _т 1500, кг/ч						
Крутящий момент дизеля на режиме максималь-	306	306	310	308		
ной мощности, Ме 2400, Н м						
Крутящий момент дизеля на режиме максималь-	351	356	350	349		
ного крутящего момента, Ме 1500, Н м						
Коэффициент избытка воздуха на режиме макси-	2,13	2,09	2,06	2,08		
мальной мощности, α 2400				•		
Коэффициент избытка воздуха на режиме макси-	1,64	1,62	1,62	1,62		
мального крутящего момента, α 1500	•			•		
Удельный эффективный расход топлива на режи-	249,2	252,9	253,8	255,3		
ме максимальной мощности, ge 2400, г/(кВт-ч)						
Удельный эффективный расход топлива на режи-	223,2	223,7	228,0	230,6		
ме максимального крутящего момента, ge 1500,						
г/(кВт·ч)						
Эффективный КПД дизеля на режиме максималь-	0,340	0,337	0,337	0,339		
ной мощности, η_{e2400}	,		,			
Эффективный КПД дизеля на режиме максималь-	0,379	0,381	0,376	0,376		
ного крутящего момента, $\eta_{e 1500}$	-)	-)	, , , , ,	-)		
Дымность ОГ на режиме максимальной мощности,	18,0	18,0	13,5	11,0		
K _x 2400, %	10,0	10,0	10,0	11,0		
Дымность ОГ на режиме максимального крутяще-	21,0	17,0	16,0	13,0		
го момента, $K_{x 1500}$, %	-1,0	17,0	10,0	10,0		
Дымность ОГ на режиме минимальной частоты	36,0	24,0	22,5	25,0		
вращения, К _{х 1080} , %	,-					
Интегральный удельный выброс оксидов азота,	7,286	6,894	6,718	6,542		
e_{NOx} , $\Gamma/(\kappa B_T \cdot \Psi)$.,	-)	.,.	-)-		
Интегральный удельный выброс монооксида угле-	2,834	2,234	2,199	2,096		
рода, есо, г/(кВт-ч)	_,55.	_,	_,_,_,	_,,,,,		
Интегральный удельный выброс углеводородов,	0,713	0,626	0,658	0,727		
еснх, г/(кВт-ч)	0,713	0,020	0,000	0,727		
CIIX, I/(KDI I)		<u> </u>				

Представленные данные свидетельствуют о том, что увеличение содержания МЭРМ в смесевом биотопливе приводит к некоторому росту часового расхода топлива $G_{\rm r}$, вызванному большей плотностью МЭРМ по сравнению с ДТ (830 и 877 кг/м³ соответственно). Однако при большей плотности МЭРМ имеет меньшую

теплоту сгорания и меньшее необходимое количество воздуха для сгорания 1 кг топлива. Поэтому при увеличении содержания МЭРМ в смесевом биотопливе крутящий момент дизеля M_e и коэффициент избытка воздуха α изменяются незначительно.

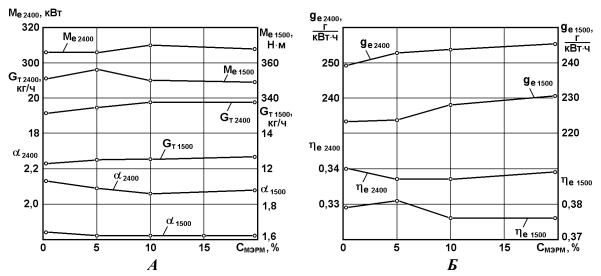


Рис. 1. Крутящий момент двигателя M_e , расход топлива $G_{\rm T}$, коэффициент избытка воздуха α (a) и эффективные показатели (δ) дизеля Д-245.12С, работающего на смесях ДТ и МЭРМ с различным содержанием Смэрм метилового эфира рапсового масла.

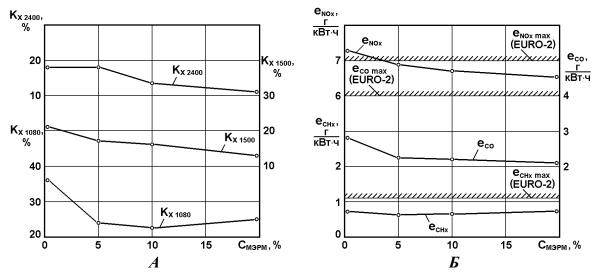


Рис. 2. Показатели дымности (a) и токсичности ОГ (δ) дизеля Д-245.12С, работающего на смесях ДТ и МЭРМ с различным содержанием С_{МЭРМ} метилового эфира рапсового масла.

Из-за меньшей теплоты сгорания МЭРМ при увеличении его содержания в смесевом биотопливе отмечен рост удельного эффективного расхода топлива ge, однако изменение эффективного КПД ηe не превышало при этом 1 %, что соизмеримо с точностью измерения расхода топлива.

Увеличение концентрации МЭРМ в смесевом биотопливе $C_{\text{МЭРМ}}$ приводит к значительному снижению дымности ОГ K_x . Так, при росте $C_{\text{МЭРМ}}$ с 0 до 20 % снижение дымность ОГ K_x составило: на режиме максимальной мощности при n=2400 мин⁻¹ – 50 % (с 18 до 11 % по шкале Хартриджа), на режиме максимального крутящего момента при n=1500 мин⁻¹ – 38 % (с 21 до 13 % по шкале Хартриджа), на режиме минимальной частоты вращения с n=1080 мин⁻¹ – 30 % (с 36 до 25 % по шкале Хартриджа). Такое снижение дымности ОГ обусловлено наличием в составе

МЭРМ около 10 % кислорода, участвующего в процессе окисления углеводородов топлива.

Другим положительным эффектом присутствия МЭРМ в топливе является заметное снижение удельных массовых выбросов оксидов азота NO_x и монооксида углерода СО. При увеличении $C_{MЭРМ}$ с 0 до 20 % снижение e_{NOx} составило 10,2 % (с 7,286 до 6,542 г/(кВт·ч)), а снижение $e_{CO} - 26,0$ % (с 2,834 до 2,096 г/(кВт·ч)).

Зависимость удельных массовых выбросов несгоревших углеводородов CH_x от содержания МЭРМ в смесевом биотопливе имеет более сложный характер. При увеличении $C_{MЭРМ}$ с 0 до 5 % удельный выброс e_{CHx} уменьшился на 12,2 % (0,713 до 0,626 г/(кВт·ч)), а при дальнейшем увеличении $C_{MЭРМ}$ до 20 % e_{CHx} возрос до 0,727 г/(кВт·ч)), т. е. практически до исходного значения (e_{CHx} =0,713 г/(кВт·ч)).

Проведенный комплекс экспериментальных исследований дизеля Д-245.12C показал возможность значительного улучшения показателей дизеля при его работе на смесях ДТ и МЭРМ.

Литература:

- 1. О содействии использованию биогорючего и других видов горючего на транспорте (Извлечение). Директива 2003/30/ЕС Европейского Парламента и Союза от 8 мая 2003 г. // Масложировая промышленность. 2005. № 4. С. 18.
- 2. Каргиев В. Законодательные инициативы Европейского Союза по стимулированию применения альтернативных видов топлива для транспорта и энергоснабжения // Автогазозаправочный комплекс + альтернативное топливо. 2005. № 5. С. 56-59.
- 3. Грехов Л.В., Иващенко Н.А., Марков В.А. Топливная аппаратура и системы управления дизелей. М.: Изд-во «Легион-Автодата», 2004. 344 с.
- 4. Льотко В., Луканин В.Н., Хачиян А.С. Применение альтернативных топлив в двигателях внутреннего сгорания. М.: Изд-во МАДИ (ТУ), 2000. 311 с.
- 5. Широкомасштабные эксперименты по введению рапсового масла в дизельное топливо // Автомобильная промышленность США. 1997. № 3. С. 5-9.
- 6. Zehn Prozent Biokraftstoff fur Alle // Verein Deutscher Ingenieure. VDI- Nachrichten. 2005. Jg. 59. № 47. 8 s.
- 7. Nylund N.-O., Aakko P. Characterization of New Fuel Qualities // SAE Technical Paper Series. 2000. № 2000-01-2009. P. 1-10.
- 8. Смайлис В., Сенчила В., Берейшене К. Моторные испытания РМЭ на высокооборотном дизеле воздушного охлаждения // Двигателестроение. 2005. № 4. С. 45-49.
- 9. Марченко А.П., Семенов В.Г. Альтернативное биотопливо на основе производных рапсового масла // Химия и технология топлив и масел. 2001. № 3. С. 31-32.

РЕЗУЛЬТАТЫ ИСПЫТАНИЯ ДИЗЕЛЯ ВАЗ-341 НА СМЕСИ ДИЗЕЛЬНОГО ТОПЛИВА И ДИМЕТИЛОВОГО ЭФИРА

Вагнер В.А., Гвоздев А.М. (АлтГТУ)

Испытания дизеля проводились на стенде ОАО «АЛТАЙ-ЛАДА». Непосредственно объект исследований — дизельный двигатель ВАЗ-341 — 4-тактный, 4-цилиндровый, рядный, вихрекамерный, размерностью 76×84 мм (рабочий объем 1,52 литра) с принудительной жидкостной системой охлаждения. Данный дизель